

Search for di-Higgs production at the ATLAS experiment

Louis D'Eramo,

On behalf of the ATLAS Collaboration

Investigating the Higgs potential

The full expression of the Higgs potential is encoded with parameters μ and λ as: Phys. Rev. D 101, 075023

$$V(\phi^{\dagger}\phi) = -\mu^{2}\phi^{\dagger}\phi + \lambda(\phi^{\dagger}\phi)^{2}$$

$$\supset \underbrace{\mu^{2} H^{2}}_{\frac{1}{2}m_{H}^{2}} + \underbrace{\sqrt{\frac{\lambda}{2}}\mu H^{3}}_{\frac{1}{2}m_{H}^{2}} + \underbrace{\frac{\lambda}{4}H^{4}}_{\frac{1}{2}m_{H}^{2}}$$

Nambu-Goldstone Higgs **Landau-Ginzburg Higgs**

Coleman-Weinberg Higgs

Tadpole-Induced Higgs

These parameters are defining the vacuum expected value ν :

Determined from the EW precise measurements

- First estimation from the Higgs mass measurement:
 - Combined with the v.e.v computation: $\lambda_{SM} \sim 0.13$

- Quartic interaction even rarer : out of reach even for HL-LHC
 - Contribution increases with \sqrt{s}

 \blacktriangleright Direct access to λ through Higgs pair creation:

Coupling strength denoted as

$$\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$$

- Wide range of BSM models predicting different shapes and thus values for κ_{λ}
- Some constraints from Single Higgs production, small effect on crosssection → looking for pair production.

Louis D'Eramo (NIU) - 14/04/2021 -Search for di-Higgs production at the ATLAS experiment

How are Higgs pairs produced?

- ▶ gluon-gluon Fusion (ggF): $\sigma_{HH}^{ggF} = 31.02 \text{ fb}$
 - ► Destructive interference between triangle and box diagrams makes the cross-section tiny (1000x smaller than single Higgs).
 - Low masses essential to constrain trilinear coupling κ_{λ}
 - m_{HH} shape very dependent on the κ_{λ}

► Vector Boson Fusion (VBF):

$$\sigma_{HH}^{VBF} = 1.72 \text{ fb}$$

Second order contribution to total production, but direct handle to vector boson coupling modifiers κ_{2V} and κ_{V} :

▶ BSM resonances:

Possible increase in signal from new physics benchmarks:

- ► Spin-0: predicted by Two-Higgs-Doublet-Models and Electroweak Singlet models
- ➤ Spin-2: predicted by Randall-Sundrum (RS) model of warped extra dimensions

Where to look for Higgs pairs?

NIU NIU

No clear Golden channel, but several promising signatures:

$$BR(HH \rightarrow XXYY)$$

	bb	WW	gg	ττ	СС	ZZ	YY	Ζγ	μμ
bb	33%								
WW	25%	4.6%							
gg									
ττ	7.4%								
СС									
ZZ	3.1%								
YY	0.26%	0.1%							
Ζγ									
μμ									

= results from ATLAS

Combining the results is necessary for observation.

► $H \rightarrow b\bar{b}$: High BR

► $H \rightarrow \tau^+ \tau^-$: Low background

Resolved: $\mathcal{L} = 36 \text{fb}^{-1}$

Phys. Rev. Lett. 121, 191801

Boosted: $\mathcal{L} = 139 \text{fb}^{-1}$

JHEP 11 (2020) 163

► $H \rightarrow b\bar{b}$: High BR

► Large hadronic background

 $ggF: \mathcal{L} = 36fb^{-1}$

JHEP 01 (2019) 030

VBF: $\mathcal{L} = 126 \text{fb}^{-1}$

JHEP 07 (2020) 108

► $H \rightarrow b\bar{b}$: High BR

 $ightharpoonup H o \gamma \gamma$: Good mass resolution/sensitive to low m_{HH}

$$\mathcal{L} = 139 \text{fb}^{-1}$$

ATLAS-CONF-2021-016

$HH \rightarrow W^+W^- + XX$ / $HH \rightarrow b\bar{b}ZZ$

▶ Decent BR from $H \rightarrow VV$

Complex final signatures due to the decay of Vs

Phys. Lett. B 801 (2020) 135145

Eur. Phys. J. C 78 (2018) 1007

JHEP 04 (2019) 092 JHEP 05 (2019) 124

 $b\bar{b}l\nu l\nu$: $\mathcal{L} = 139 {\rm fb}^{-1}$ $\gamma \gamma WW^*$: $\mathcal{L} = 36 {\rm fb}^{-1}$ $b\bar{b}l\nu q\bar{q}$: $\mathcal{L} = 36 {\rm fb}^{-1}$ WW^*WW^* : $\mathcal{L} = 36 {\rm fb}^{-1}$

 $HH \rightarrow b\bar{b}\tau^+\tau^-$

Strategy

Resolved: $\mathcal{L} = 36 \, \text{fb}^{-1}$ Phys. Rev. Lett. 121, 191801

Boosted: $\mathcal{L} = 139 \text{fb}^{-1}$ JHEP 11 (2020) 163

Two strategies aiming at different regimes:

- ► Resolved: low momenta, single objects can be defined → non-resonant & resonant searches;
- ▶ Boosted: high momenta, objects are merged → resonant searches.

Resolved:

Based on the decay of taus:

- $\blacktriangleright \tau_{\rm lep} \tau_{\rm had}$: exactly 1 lepton + 1 hadronic τ ;
- ightharpoonup $au_{\rm had} au_{\rm had}$: exactly two hadronic aus.

Boosted

Novel Boosted Decision Tree (BDT) reconstruction and identification of $\text{di-}\tau$ in large R jets:

► \leq 3 sub-jets, sum of track charge ± 1 in each sub- τ .

How to look for signal?

Resolved: $\mathcal{L} = 36 \text{fb}^{-1}$ Phys. Rev. Lett. 121, 191801

Boosted: $\mathcal{L} = 139 \text{fb}^{-1}$ JHEP 11 (2020) 163

Resolved:

Fit: based on a BDT distribution trained in 3 SRs:

- $ightharpoonup au_{
 m lep} au_{
 m had}$: Single Lepton Trigger (STT), Lepton + Tau Trigger (LTT);
- $\blacktriangleright \tau_{\rm had} \tau_{\rm had}$: Single/Di Tau Triggers.

Non-resonant

Signal: SM ggF HH.

Resonant

Signals: Spin-0 and Spin-2.

► 1 training/mass (260-1000 GeV)

dedicated Control Regions for:

 $t\bar{t}, Z \to \tau\tau$, multi-jets (evaluated from data-driven ABCD method)

Boosted:

Fit: Single bin fit for different resonant masses.

Selections based on:

- ► Mass of Large R jet;
- ▶ visible di-Higgs mass m^{vis}_{HH}.

dedicated Control Regions for:

 $Z \rightarrow \tau \tau$ + jets, multi-jets (evaluated from data-driven ABCD method)

Results

Resolved: $\mathcal{L} = 36 \text{fb}^{-1}$ Phys. Rev. Lett. 121, 191801

Boosted: $\mathcal{L} = 139 \text{fb}^{-1}$ JHEP 11 (2020) 163

 $\sigma_{HH}^{ggF} \times BR(HH \rightarrow b\bar{b}\tau\tau)$ observed (expending times)

12.7 (14.8) times the SM prediction.

Resonant

Limits set on $\sigma(X/G_{KK}\to HH\to b\bar{b}\tau\tau)$

- X is for the hMSSM scalar production.
- ► G_{KK} for the bulk RS Kaluza–Klein (KK) graviton production.

Boosted:

No significant excess found

Limits set on $\sigma(X \to HH \to b\bar{b}\tau\tau)$ where X is a narrow-width scalar resonance:

▶ Two regimes based on the cut on m_{HH}^{vis}

 $HH \rightarrow b\bar{b}b\bar{b}$

Strategy

ggF: $\mathcal{L} = 36 \text{fb}^{-1}$ JHEP 01 (2019) 030

VBF: $\mathcal{L} = 126 \text{fb}^{-1}$ JHEP 07 (2020) 108

On top of the two regimes (Resolved/Boosted), different signals are aimed for:

ggF

Resolved:

► At least 4 central b-tagged jets.

Boosted:

- ► At least 2 large R jets;
- ► At least 1 variable radius b-tagged jet in each large R jet.

VBF

Central jets:

► At least 4 central b-tagged jets.

VBF jets:

▶ At least 2 forward jets with opposite η sign.

Pairing Jets

Angular distance between jets in each Higgs candidate $|\Delta R_{jj}|$ is compared to the 4 bodies invariant mass m_{4j}

Given that the reconstructed masses should be similar, the distance to median of the signal expectation is minimised.

How to look for signal?

 $ggF: \mathscr{L} = 36fb^{-1}$

JHEP 07 (2020) 108

VBF: $\mathcal{L} = 126 \text{fb}^{-1}$ JHEP 07 (2020) 108

ggF

Resolved:

Fit: using the HH invariant mass

Main backgrounds:

- $\blacktriangleright t\bar{t}$: Consistency of jet originating from top quark checked through specific variable
- ► <u>multi-jets</u>:
 - $|\Delta \eta_{HH}| < 1.5$, 4-jets mass dependent Higgs p_T cut;
 - ► Dedicated Signal, Validation and Control Regions based Higgs bosons masses and b-tagging requirements (2-tag vs 4-tag).

Boosted:

Fit: due to low b-tagging efficiency in large jets, 3 signal regions are defined:

2-tagged sub-jets.

VBF Similar cuts as for the ggF resolved analysis. 40 GeV **ATLAS** $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}$ Signal region 300 400 500 600 700 800 900 1000

Louis D'Eramo (NIU) - 14/04/2021 -Search for di-Higgs production at the ATLAS experiment

Results

ggF: $\mathcal{L} = 36 \text{fb}^{-1}$ JHEP 01 (2019) 030

VBF: $\mathcal{L} = 126 \text{fb}^{-1}$ JHEP 07 (2020) 108

ggF

No significant excess found

Non-resonant Resolved

 $\sigma_{HH}^{ggF} \times BR(HH \to b\bar{b}b\bar{b})$ observed (expected) limit is 12.9 (14.8) times the SM prediction.

Resonant Resolved (260–1400 GeV) Boosted (800–3000 GeV)

Limits set on $\sigma(X/G_{KK} \to HH \to b\bar{b}b\bar{b})$:

- ► X is a narrow-width scalar resonance.
- ► G_{KK} for the bulk RS Kaluza–Klein (KK) graviton production. Small excess at 280 GeV with local (global) significance of 3.6 (2.3) σ

Non-resonant

 σ_{HH}^{VBF} observed (expected) limit is 840 (550) times the SM prediction.

Limits are set on κ_{2V} :

 $-0.43 < \kappa_{2V} < 2.56$ (observed), $-0.55 < \kappa_{2V} < 2.72$ (expected).

300 400 500 600

VBF No significant excess found

Resonant

m_x [GeV]

Limits set on $\sigma_{VBF}(X \to HH)$ where X is either a narrow- or broad-width scalar resonance

 $HH \rightarrow b\bar{b}\gamma\gamma$

Strategy

► Exactly 2 High quality photons

- ► Exactly 2 b-jets:
 - ▶ Dedicated energy correction from semileptonic decay effect (muon and neutrino) → similar to what applied in $VH \rightarrow b\bar{b}$

While the $m_{\gamma\gamma}$ variable is now used for the fit, the HH invariant mass $m_{b\bar{b}\gamma\gamma}$ is still useful for both the:

- ▶ Non-resonant search (sensitive to κ_{λ});
- ► Resonant searches (sensitive to mass of resonance).

Due to experimental resolution effects, this can be corrected, assuming the two subsystems are originating from Higgs bosons:

$$m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250$$

Louis D'Eramo (NIU) - 14/04/2021 -Search for di-Higgs production at the ATLAS experiment

Non Resonant

A *BDT* is used to select signal like events w.r.t di-photon + single Higgs. Categories are created from $m_{b\bar{b}\gamma\gamma}^*$:

- ► High mass, focussed on SM
 - $\kappa_{\lambda} = 1$ ggF HH used as signal;
- ► Low mass, focussed on BSM
 - $\kappa_{\lambda} = 10$ ggF HH used as signal.

In each mass category, two regions are created: Loose/Tight BDT cut

- 2 separate *BDTs* are used to separate resonant signals from di-photon and single Higgs:
- ► All resonances are combined and reweighted to show same $m^*_{b\bar{b}\gamma\gamma}$ as background;
- ► BDT scores combined:

$$BDT_{tot} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \sqrt{C_1^2 \left(\frac{BDT_{\gamma\gamma} + 1}{2}\right)^2 + C_2^2 \left(\frac{BDT_{Single}H + 1}{2}\right)^2}$$

 $C_1 = 1 - C_2 = 0.65$ to maximise significance

- ► Mass dependent cut on BDT score
- ► 22 mass categories created.
- Cut is set on the $m_{b\bar{b}\gamma\gamma}^*$ mass for each resonant search:

 $[mean - 2 \times RMS; mean + 2 \times RMS]^*$

 * extended to 4 x RMS for $m_{X} \geq 900~{\rm GeV}$

Modelling

120

110

130

140

Diphoton Background

Functional form used to model the background:

- ► Fitted to background template normalised to data sideband;
- ▶ Bias from the function choice estimated through "Spurious Signal":
 - Signal event yield extracted from a S+B fit to the background-only distribution;
- ► Functions minimising the number of parameters and spurious signal is retained :
 - $exp(\alpha \cdot m_{yy})$ retained for all categories.

Single Higgs HH signal

- ► Single Higgs and HH processes can be modelled with double-sided Crystal Ball function.
 - Extracted in each category;
 - ggF and VBF HH are merged (using $\kappa_{\lambda} = 1$);
 - Same shape applied to single Higgs.
- ▶ Yields determined from $\sigma \times BR$ and $eff. \times acc$.

 Theory Simulation

Category	σ_{68} [GeV]
High mass BDT tight High mass BDT loose Low mass BDT tight Low mass BDT loose	1.46 ± 0.01 1.61 ± 0.02 1.72 ± 0.06 1.81 ± 0.03
Resonant $m_X = 300 \text{ GeV}$ Resonant $m_X = 500 \text{ GeV}$	1.96 ± 0.02 1.60 ± 0.01

 $HH \rightarrow b\bar{b}\gamma\gamma$

Louis D'Eramo (ΝΙΟ) - 14/04/2021 -Search for αι-Higgs production at the ATLAS experiment

m_{γγ} [GeV]

160

150

Results

Non Resonant

No significant excess found

$$\sigma_{HH}^{ggF+VBF}$$

observed (expected) limit is4.1 (5.5) times the SM prediction.

- ► Improved by factor 4 from $\mathcal{L} = 36 \text{ fb}^{-1}$;
- ► Best result from single channel observed to date;
- Statistically dominated.
- ► Limits are set on κ_{λ} : $-1.5 < \kappa_{\lambda} < 6.7$ observed $-2.4 < \kappa_{\lambda} < 7.7$ expected.

Conclusion

Combinaison: $\mathcal{L} = 36 \, \mathrm{fb^{-1}}$ Phys. Lett. B 800 (2020) 135103

 $b\bar{b}l\nu l\nu$ final state (not presented today): Phys. Lett. B 801 (2020) 135145

observed (expected) limit is 14 (29) times the SM prediction.

observed (expected) limit is 4.1 (5.5) times the SM prediction.

→ Single results outperforms the combination.

First look at **VBF**:

 σ_{HH}^{VBF} observed (expected) limit is 840 (550) times the SM prediction.

→ Still very limited

Conclusion

Combination done with most of the analyses with $\mathcal{L} = 36 \text{fb}^{-1}$

$$-1.5 < \kappa_{\lambda} < 6.7$$
 observed,

$$-2.4 < \kappa_{\lambda} < 7.7$$
 expected.

→ Single results outperforms the combination.

First look at **VBF**: $b\bar{b}b\bar{b}$ final state

Limits are set on the κ_{2V} coupling modifier to:

$$-0.43 < \kappa_{2V} < 2.56$$
 observed,

$$-0.55 < \kappa_{2V} < 2.72$$
 expected.

Conclusion

Combination done with most of the analyses with $\mathcal{L} = 36 \text{fb}^{-1}$

observed (expected) limit is **610 fb** (251 GeV) **to 47 fb** (1000 GeV) (360-43 fb)

→ Single results outperforms the combination in most of the mass range

$bar{b} au au$ Boosted final state

observed (expected) limit is **816 fb** (1000 GeV) **to 27 fb** (2500 GeV) (624-31 fb)

First look at Resonant **VBF**: $b\bar{b}b\bar{b}$ final state

BACK-UP

HH: Higgs potential modification

$$V(H) \simeq \begin{cases} -m^2 H^\dagger H + \lambda (H^\dagger H)^2 + \frac{c_6 \lambda}{\Lambda^2} (H^\dagger H)^3, & \text{Elementary Higgs} \\ -a \sin^2 (\sqrt{H^\dagger H}/f) + b \sin^4 (\sqrt{H^\dagger H}/f), & \text{Nambu-Goldstone Higgs} \end{cases}$$

$$\frac{\lambda (H^\dagger H)^2 + \epsilon (H^\dagger H)^2 \log \frac{H^\dagger H}{\mu^2}}{\lambda (H^\dagger H)^2 + \epsilon (H^\dagger H)^2 \log \frac{H^\dagger H}{\mu^2}}, & \text{Coleman-Weinberg Higgs} \end{cases}$$

$$-\kappa^3 \sqrt{H^\dagger H} + m^2 H^\dagger H, & \text{Tadpole-induced Higgs}$$

pseudo Nambu-Goldstone boson emerging from strong dynamics at a high scale

Coleman-Weinberg Higgs EWSB is triggered by renormalization group (RG) running effects

EWSB is triggered by the Higgs tadpole

minimal composite Higgs model/composite twin Higgs model: different coupling to top quark

Single Higgs constrains

ATL-PHYS-PUB-2019-009

Combinaison of single Higgs channels with $\mathcal{L} = 80 \text{fb}^{-1}$ yielding: $-3.2 < \kappa_{\lambda} < 11.9$

Object selection

Resolved: $\mathcal{L} = 36 \text{fb}^{-1}$ Phys. Rev. Lett. 121, 191801

Boosted: $\mathcal{L} = 139 \text{fb}^{-1}$ JHEP 11 (2020) 163

Trigger:

► Resolved: based on the tau decay chain:

$ au_{ m lep}$	$ au_{ m had}$	$ au_{ m had} au_{ m had}$
Single lepton	Single lepton + hadronic tau + additional jet	(Single hadronic tau) (di-tau + additional jet)

► Boosted: Single large radius jet

Resolved:

- $\tau_{\rm lep} \tau_{\rm had}$: exactly 1 lepton + 1 hadronic τ of opposite charge
- $ightharpoonup au_{
 m had} au_{
 m had}$: exactly two hadronic aus with opposite charge
- + reconstructed mass $m_{\tau\tau}^{MMC} > 60 \text{ GeV}$

Boosted:

Novel BDT reconstruction and identification of $di-\tau$ in large R jets:

- ► $p_T^{large\ jet}$ > 300 GeV
- ► ≤ 3 sub-jets, sum of track charge ± 1 in each sub- τ

Resolved:

Exactly 2 b-jets with 70% working point:

- ► Leading jet $p_T > 45$ (80) GeV
- ► Sub-leading jet $p_T > 20$ GeV

Boosted:

- ► ≥ 1 large R jet with $p_T^{large\ jet}$ > 300 GeV
- ► 2 variable radius b-tagged jets

Bbtautau Boosted

Boosted di-tau BDT identification:

Variable	Definition
$E_{\Delta R < 0.1}^{\mathrm{sj_1}}/E_{\Delta R < 0.2}^{\mathrm{sj_1}}$ and $E_{\Delta R < 0.1}^{\mathrm{sj_2}}/E_{\Delta R < 0.2}^{\mathrm{sj_2}}$	Ratios of the energy deposited in the core to that in the full cone, for the sub-jets sj_1 and sj_2 , respectively
$p_{\mathrm{T}}^{\mathrm{sj_2}}/p_{\mathrm{T}}^{\mathrm{LRJ}}$ and $(p_{\mathrm{T}}^{\mathrm{sj_1}}+p_{\mathrm{T}}^{\mathrm{sj_2}})/p_{\mathrm{T}}^{\mathrm{LRJ}}$	Ratio of the $p_{\rm T}$ of sj ₂ to the di- τ seeding large-radius jet $p_{\rm T}$ and ratio of the scalar $p_{\rm T}$ sum of the two leading sub-jets to the di- τ seeding large-radius jet $p_{\rm T}$, respectively
$\log(\sum p_{\mathrm{T}}^{\mathrm{iso\text{-}tracks}}/p_{\mathrm{T}}^{\mathrm{LRJ}})$	Logarithm of the ratio of the scalar $p_{\rm T}$ sum of the iso-tracks to the di- τ seeding large-radius jet $p_{\rm T}$
$\Delta R_{\text{max}}(\text{track}, \text{sj}_1) \text{ and } \Delta R_{\text{max}}(\text{track}, \text{sj}_2)$	Largest separation of a track from its associated sub-jet axis, for the sub-jets sj_1 and sj_2 , respectively
$\sum [p_{\mathrm{T}}^{\mathrm{track}} \Delta R(\mathrm{track}, \mathrm{sj}_2)] / \sum p_{\mathrm{T}}^{\mathrm{track}}$	p_{T} -weighted ΔR of the tracks matched to sj ₂ with respect to its axis
$\sum [p_{\mathrm{T}}^{\mathrm{iso\text{-}track}} \Delta R(\mathrm{iso\text{-}track}, \mathrm{sj})] / \sum p_{\mathrm{T}}^{\mathrm{iso\text{-}track}}$	p_{T} -weighted sum of ΔR between iso-tracks and the nearest sub-jet axis
$\log(m_{\Delta R < 0.1}^{\text{tracks, sj}_1})$ and $\log(m_{\Delta R < 0.1}^{\text{tracks, sj}_2})$	Logarithms of the invariant mass of the tracks in the core of sj_1 and sj_2 , respectively
$\log(m_{\Delta R < 0.2}^{\text{tracks, sj}_1})$ and $\log(m_{\Delta R < 0.2}^{\text{tracks, sj}_2})$	Logarithms of the invariant mass of the tracks with $\Delta R < 0.2$ from the axis of sj ₁ and sj ₂ , respectively
$\log(d_{0,\text{lead-track}}^{\text{sj}_1})$ and $\log(d_{0,\text{lead-track}}^{\text{sj}_2})$	Logarithms of the closest distance in the transverse plane between the primary vertex and the leading track of sj_1 and sj_2 , respectively
$n_{ m tracks}^{ m sj_1}$ and $n_{ m tracks}^{ m sub-jets}$	Number of tracks matched to sj ₁ and to all sub-jets, respectively

Bbtautau Resolved

au^+ $HH o b ar{b} au^+ au^-$

BDT input variables:

Variable	$ au_{ m lep} au_{ m had}$ channel (SLT resonant)	$ au_{ m lep} au_{ m had}$ channel (SLT nonresonant & LTT)	$ au_{ m had} au_{ m had}$ channel
m_{HH}	√	✓	√
$m_{ au au}^{ m MMC}$	✓		✓
m_{bb}	✓		✓
$\Delta R(au, au)$	✓		✓
$\Delta R(b,b)$	✓		✓
$E_T^{ m miss}$	✓		
$E_T^{\text{miss}} \phi$ centrality	✓		✓
m_T^W	✓		
$\Delta \phi(H,H)$	✓		
$\Delta p_T(\text{lep}, au_{\text{had-vis}})$	✓		
Subleading b -jet p_T	✓		

Non resonant limits per channel:

		Observed	-1σ	Expected	$+1\sigma$
	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96
$ au_{ m lep} au_{ m had}$	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
$ au_{ m had} au_{ m had}$	$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2
Cambination	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
Combination	$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6

Impact of systematics on SM limit:

Source	Uncertainty (%)
Total	±54
Data statistics	± 44
Simulation statistics	± 16
Experimental uncertainties	
Luminosity	± 2.4
Pileup reweighting	± 1.7
$ au_{ m had}$	± 16
Fake-τ estimation	± 8.4
b tagging	± 8.3
Jets and $E_T^{ m miss}$	± 3.3
Electron and muon	± 0.5
Theoretical and modeling uncertainties	
Top	± 17
Signal	± 9.3
Z o au au	± 6.8
SM Higgs	± 2.9
Other backgrounds	± 0.3

BDTs

Non Resonant

Variable	Definition			
Photon-related kinematic variables				
$p_{\mathrm{T}}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their			
$P \prod_{i} \gamma_{i}$	invariant mass $m_{\gamma\gamma}$			
n and d	Pseudo-rapidity and azimuthal angle of the leading and			
η and ϕ	sub-leading photon			
Jet-related kinemat	tic variables			
b-tag status	Highest fixed b-tag working point that the jet passes			
1 ,	Transverse momentum, pseudo-rapidity and azimuthal			
p_{T} , η and ϕ	angle of the two jets with the highest b -tagging score			
$bar{b}$.	Transverse momentum, pseudo-rapidity and azimuthal			
$p_{\mathrm{T}}^{bb},\eta_{bar{b}}$ and $\phi_{bar{b}}$	angle of b-tagged jets system			
	Invariant mass built with the two jets with the highest			
$m_{bar{b}}$	b-tagging score			
$H_{ m T}$	Scalar sum of the p_T of the jets in the event			
Single topness	For the definition, see Eq. (1)			
Missing transverse momentum-related variables				
$E_{\mathrm{T}}^{\mathrm{miss}}$ and ϕ^{miss}	Missing transverse momentum and its azimuthal angle			

Resonant

Variable	Definition			
Photon-related kinematic variables				
$p_{\mathrm{T}}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system			
$\Delta\phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons			
Jet-related kinematic variables				
$m_{b\bar{b}}, p_{\mathrm{T}}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the b -tagged jets system			
$\Delta\phi_{bar{b}}$ and $\Delta R_{bar{b}}$	Azimuthal angular distance and ΔR between the two b -tagged jets			
$N_{\rm jets}$ and $N_{b-{\rm jets}}$	Number of jets and number of b-tagged jets			
$H_{ m T}$	Scalar sum of the p_T of the jets in the event			
Photons and jets-related kinematic variables				
$m_{bar{b}\gamma\gamma}$	Invariant mass built with the di-photon and <i>b</i> -tagged jets system			
$\Delta y_{\gamma\gamma,bar{b}}, \Delta\phi_{\gamma\gamma,bar{b}}$ and $\Delta R_{\gamma\gamma,bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the di-photon and the b -tagged jets system			

Post-fit plots

150

 $m_{\gamma\gamma}$ [GeV]

Louis D'Eramo (NIU) - 14/04/2021 -Search for di-Higgs production at the ATLAS experiment

Yields and systematics

	High mass BDT tight	High mass BDT loose	Low mass BDT tight	Low mass BDT loose
Continuum background Single Higgs boson background	4.9 ± 1.1 0.670 ± 0.032	9.5 ± 1.5 1.57 ± 0.04	3.7 ± 1.0 0.220 ± 0.016	24.9 ± 2.5 1.39 ± 0.04
ggF	0.261 ± 0.028	0.44 ± 0.04	0.063 ± 0.014	0.274 ± 0.030
$tar{t}H$ ZH	0.1929 ± 0.0045 0.142 ± 0.005	0.491 ± 0.007 0.486 ± 0.010	0.1074 ± 0.0033 0.04019 ± 0.0027	0.742 ± 0.009 0.269 ± 0.007
Rest	0.074 ± 0.012	0.155 ± 0.020	0.008 ± 0.006	0.109 ± 0.016
SM HH signal ggF VBF	0.8753 ± 0.0032 0.8626 ± 0.0032 0.01266 ± 0.00016	0.3680 ± 0.0020 0.3518 ± 0.0020 0.01618 ± 0.00018	$(49.4 \pm 0.7) \cdot 10^{-3}$ $(46.1 \pm 0.7) \cdot 10^{-3}$ $(3.22 \pm 0.08) \cdot 10^{-3}$	$(78.7 \pm 0.9) \cdot 10^{-3}$ $(71.8 \pm 0.9) \cdot 10^{-3}$ $(6.923 \pm 0.011) \cdot 10^{-3}$
Alternative $HH(\kappa_{\lambda} = 10)$ signal	6.36 ± 0.05	3.691 ± 0.038	4.65 ± 0.04	8.64 ± 0.06
Data	2	17	5	14

Y	b
$HH \rightarrow$	$bar{b}\gamma\gamma$

	$m_X = 300 \text{ GeV}$	$m_X = 500 \text{ GeV}$
Continuum background Single Higgs boson background SM HH background	5.6 ± 2.4 0.339 ± 0.009 $(20.6 \pm 0.5) \cdot 10^{-3}$	3.5 ± 2.0 0.398 ± 0.010 0.1932 ± 0.0015
$X \to HH$ signal	5.771 ± 0.031	5.950 ± 0.026
Data	6	4

		Relative impact of the systematic uncertainties in	
Source	Type	Non-resonant analysis <i>HH</i>	Resonant analysis $m_X = 300 \text{ GeV}$
Experimental			
Photon energy scale Photon energy resolution Flavor tagging	Norm. + Shape Norm. + Shape Normalization	5.2 1.8 0.5	2.7 1.6 < 0.5
Theoretical			
Heavy flavor content Higgs boson mass PDF+ $\alpha_{\rm s}$	Normalization Norm. + Shape Normalization	1.5 1.8 0.7	< 0.5 < 0.5 < 0.5
Spurious signal	Normalization	5.5	5.4

Selection

 $b\bar{b}l\nu l\nu$ final state : $\mathcal{L}=139 \mathrm{fb}^{-1}$ $b\bar{b}l\nu q\bar{q}$ final state : $\mathcal{L}=36 \mathrm{fb}^{-1}$ $\gamma\gamma WW^*$ final state : $\mathcal{L}=36 \mathrm{fb}^{-1}$ WW^*WW^* final state : $\mathcal{L}=36 \mathrm{fb}^{-1}$

Phys. Lett. B 801 (2020) 135145

JHEP 04 (2019) 092

Eur. Phys. J. C 78 (2018) 1007

JHEP 05 (2019) 124

$bar{b}l\nu qar{q}$ final state

Trigger:

Single lepton triggers

Event selection:

 $H \rightarrow bb$:

- ► Resolved: exactly 2 b-tagged jets @ 85%
- ▶ Boosted: One large R jet with $\Delta R(jet, l) > 1.0$ and mass (90, 140) GeV, with 2 VR b-tagged jets @ 85%

 $H \rightarrow WW^* \rightarrow l\nu q\bar{q}$:

- ► Resolved:
 - ► ≥ 1 high quality lepton.
 - \triangleright 2 additional jets, pair chosen with minimising $\Delta R(jet, jet)$
 - \blacktriangleright Kinematic fit to find the neutrino momentum assuming $m_H=125$ GeV
- ► Boosted: same as in resolved.

Signal regions:

- ► Resolved: cuts applied on kinematic and geometrical variables to define 1 non-resonant category + 1 resonant category/mass point
- ▶ Boosted: $E_T^{miss} > 50$ GeV

Fit: m_{HH} in different categories

Resolved

Trigger:

Single lepton supplemented with di-lepton triggers

Event selection:

- ightharpoonup H o bb:
 - ► Exactly 2 b-tagged jets @ 70 %.
 - $m_{b\bar{b}}$ in (110,140) GeV
- $\rightarrow H \rightarrow WW^* \rightarrow l\nu l\nu$:
 - Exactly 2 opposite charge high quality leptons.
 - ▶ Due to spin-correlation, m_{II} in (20, 60) GeV.
 - Categories: based on flavour.
- ► Deep neural Network:
 - ► To remove dominant backgrounds
 - ► Trained on $HH \to b\bar{b}WW^*$, but output sensitive to $HH \to b\bar{b}ZZ^*$ and $HH \to b\bar{b}\tau\tau$

Fit: single bin in different categories

Results

 $b\bar{b}l\nu l\nu$ final state : $\mathcal{L}=139 \mathrm{fb}^{-1}$ $bbl\nu q\bar{q}$ final state : $\mathcal{L}=36\mathrm{fb}^{-1}$ $\gamma \gamma WW^*$ final state : $\mathcal{L} = 36 \text{fb}^{-1}$ WW^*WW^* final state : $\mathcal{L} = 36 \text{fb}^{-1}$

Phys. Lett. B 801 (2020) 135145 JHEP 04 (2019) 092

Eur. Phys. J. C 78 (2018) 1007

JHEP 05 (2019) 124

Resolved Non-resonant

observed (expected) limit is $\sigma_{\!H\!H}^{ggF}$ 300 (190) times the SM prediction.

Resolved Boosted Resonant:

Limits set on $\sigma(X \to HH)$ where X is a narrow-width scalar resonance

Resolved

 $HH \rightarrow W^+W^- + XX$

Non-resonant

observed (expected) limit is $\sigma_{\!H\!H}^{ggF}$ 14 (29) times the SM prediction.

